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Abstract.18

Background: Hippocampal atrophy is a well-known biomarker of neurodegeneration, such as that observed in Alzheimer’s
disease (AD). Although distributions of hippocampal volume trajectories for asymptomatic individuals often reveal substantial
heterogeneity, it is unclear whether interpretable trajectory classes can be objectively detected and used for prediction analyses.
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Objective: To detect and predict hippocampal trajectory classes in a computationally competitive context using established
AD-related risk factors/biomarkers.
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Methods: We used biomarker/risk factor and longitudinal MRI data in asymptomatic adults from the AD Neuroimaging
Initiative (n = 351; Mean = 75 years; 48.7% female). First, we applied latent class growth analyses to left (LHC) and right
(RHC) hippocampal trajectory distributions to identify distinct classes. Second, using random forest analyses, we tested 38
multi-modal biomarkers/risk factors for their relative importance in discriminating the lower (potentially elevated atrophy
risk) from the higher (potentially reduced risk) class.
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Results: For both LHC and RHC trajectory distribution analyses, we observed three distinct trajectory classes. Three biomark-
ers/risk factors predicted membership in LHC and RHC lower classes: male sex, higher education, and lower plasma A�1–42.
Four additional factors selectively predicted membership in the lower LHC class: lower plasma tau and A�1–40, higher
depressive symptomology, and lower body mass index.
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Conclusion: Data-driven analyses of LHC and RHC trajectories detected three classes underlying the heterogeneous dis-
tributions. Machine learning analyses determined three common and four unique biomarkers/risk factors discriminating the
higher and lower LHC/RHC classes. Our sequential analytic approach produced evidence that the dynamics of preclinical
hippocampal trajectories can be predicted by AD-related biomarkers/risk factors from multiple modalities.
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Keywords: Biomarker predictions, hippocampal atrophy, latent class growth analyses, random forest analyses, trajectory
classes
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INTRODUCTION33

Hippocampal atrophy is a well-documented ana-34

tomical process that typically occurs during brain35

aging [1–4]. However, aged individuals may vary in36

several indicators of hippocampal atrophy, including37

level (e.g., overall volume loss), slope (e.g., rate of38

volume loss), and associated clinical outcomes (e.g.,39

memory impairment, Alzheimer’s disease (AD))40

[1, 5–7]. In a distribution of cognitively normal41

(i.e., unimpaired or asymptomatic) older adults,42

hippocampal volume trajectories characterized by43

relatively lower levels and steeper decline may be44

suggestive of elevated risk for subsequent clinical45

transitions to mild cognitive impairment (MCI) or AD46

[8–10]. Given its heterogeneity in level and change,47

further studies are required to ascertain and disentan-48

gle important features that characterize hippocampal49

atrophy in cognitively normal aging. Among the50

considerations are accumulating evidence of hip-51

pocampal hemispheric differences that are reflected52

in volume trajectories and various clinical outcomes53

[11–13]. For example, left and right hippocampal54

trajectories have been found to be differentially55

moderated by sex and APOE (McFall et al., unpub-56

lished data). Hemispheric differences in hippocampal57

subfields have also been observed between clinical58

cohorts (i.e., normal controls, subjective cognitive59

decline, MCI, and AD) [14]. We investigated this60

issue by deploying a sequence of two data-driven61

analytic approaches (i.e., latent class growth analy-62

sis, random forest classification) in parallel for the63

left (LHC) and right (RHC) hippocampi: 1) objec-64

tively discriminating classes within a distribution of65

individualized volume longitudinal trajectories, and66

2) identifying key biomarkers and risk factors that67

discriminated between the observed classes.68

Previous hippocampal atrophy research has been69

conducted with both cross-sectional (comparing age70

or clinical groups at one time point) and longi-71

tudinal (following groups over two or more time72

points) designs [3, 7, 9, 15, 16]. Although useful73

for determining average group differences or mean-74

level change in multiple domains of asymptomatic75

brain and cognitive aging, these variable-oriented 76

approaches (i.e., focused on relationships between 77

variables in assumed homogeneous populations) 78

are not typically aimed at scrutinizing the well- 79

established individual heterogeneity in either the 80

level or slope of trajectories [3, 17–19] as compared 81

to person-oriented approaches (i.e., focused on simi- 82

larities and patterns among individuals in an assumed 83

heterogeneous population) [20]. Recently, the grow- 84

ing interest in examining heterogeneity in brain aging 85

and dementia [21, 22] has led to a corresponding 86

effort to adapt data-driven technologies to the 1) 87

examination of individualized trajectories of cogni- 88

tive changes in older adults and 2) determination of 89

possible underlying classes of trajectory patterns [19, 90

21, 23]. These latent classes, which are determined 91

via application of algorithms based on performance 92

intercept (level) and slope (rate of change) parameters 93

[20], may later be clarified by identifying predictors 94

most associated with reduced or exacerbated risk for 95

cognitive decline or clinical impairment [21]. 96

A growing body of neurocognitive aging and 97

dementia research has demonstrated the viability 98

of applying data-driven technologies to model het- 99

erogeneity in both cross-sectional and longitudinal 100

(trajectory) distributions, including the identification 101

of detectable asymptomatic classes and the deter- 102

mination of differential biomarker predictors [19, 103

21, 24]. One such longitudinal example in an AD 104

sample identified atrophy subtypes associated with 105

differing degrees of memory performance [25]. 106

In asymptomatic individuals, three cross-sectional 107

biomarker profile subtypes were extracted from a 108

combination of magnetic resonance imaging (MRI) 109

data and cerebrospinal fluid (CSF) biomarkers [26]. 110

One of these subtypes, similar in biomarker pro- 111

file to a comparative AD group, was associated 112

with accelerated cognitive decline and lower baseline 113

scores on cognitive tests [26]. Although few stud- 114

ies have explored longitudinal data-driven subtypes 115

[21], separate cross-sectional studies of cognitively 116

unimpaired older adults have previously reported 117

distinct imaging subtypes [27–32]. As both cogni- 118

tively unimpaired aging and AD are characterized by 119
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progressive hippocampal atrophy, the possible pre-120

sence of detectable longitudinal subtypes of hip-121

pocampal trajectories in cognitively normal older122

adults and their potential associations with AD-123

related risk factors merit further investigation.124

Research on early detection of AD risk in asymp-125

tomatic older adults has identified a large number of126

modifiable and non-modifiable factors (e.g., APOE127

genetic risk, education, metabolic health, sex) which128

are associated with increased risk of (or protection129

from) accelerated cognitive decline, MCI, and AD130

[33–35]. Similarly, previous studies of normal aging131

and hippocampal atrophy in normal aging and clini-132

cal groups have identified predictors from multiple133

domains. For example, both traditional CSF AD-134

related biomarkers, such as baseline p-tau181p and135

A�1–42 [36, 37], and such disparate lifestyle risk fac-136

tors as smoking [38] and complex mental activity [39]137

have been associated with hippocampal atrophy. In138

addition, three CSF biomarkers [37] have been pre-139

viously used in a multiple linear regression model to140

predict longitudinal hippocampal atrophy. Although141

some recent biomarker reports have featured data-142

driven technologies applied to large numbers of143

predictors of AD outcomes [40], longitudinal stud-144

ies of hippocampal atrophy in cognitively unimpaired145

older adults have not included a large number of146

biomarkers or biomarker domains. Previous reports147

have emphasized the need to include biomarkers from148

multiple modalities in prediction models over the use149

of a single biomarker or domain in order to achieve150

increased prediction accuracy [41, 42].151

We aimed to address a knowledge gap regard-152

ing hippocampal volume trajectories in cognitively153

asymptomatic aging. Specifically, the gap refers to the154

extent to which the heterogeneity of trajectory distri-155

butions can be clarified by the detection of underlying156

longitudinal latent classes and the determination of157

leading risk factor and biomarker predictors. Because158

hippocampal hemispheric atrophy differences have159

been reported both cross-sectionally [13, 43] and160

longitudinally [44–46], we implemented this aim161

by testing two main research goals, both of which162

included parallel analyses of LHC and RHC. For163

the first research goal (RG1), we analyzed distribu-164

tions of hippocampal volume trajectories (up to six165

time points, maximum of 7.2 years) for predom-166

inantly cognitively normal (asymptomatic) partici-167

pants from the Alzheimer’s Disease Neuroimaging168

Initiative (ADNI). We used latent class growth anal-169

yses (LCGA) to detect discriminable classes of170

trajectories. LCGA is a data-driven longitudinal171

quantitative modeling technology that applies an 172

algorithm of level and slope to identify statistically 173

separable trajectory classes. Our study focused on 174

a brain aging phase not yet characterized by clini- 175

cal impairment. Despite normal cognitive function, 176

some individuals may exhibit relatively lower and 177

declining hippocampal volume likely associated with 178

increased risk of future cognitive decline or AD. 179

Notably, membership in higher volume trajectory 180

classes may indicate reduced risk for (or protection 181

from) age-typical morphological shrinkage, member- 182

ship in lower volume trajectory classes may indicate 183

elevated risk for impending pathological changes. 184

For our second research goal (RG2), we compiled a 185

large, multi-modal set of 38 AD-related biomarkers 186

and risk factors (e.g., CSF A�1–42, body mass index, 187

hypertension, sex) from the ADNI database. Whereas 188

most studies have investigated these factors indepen- 189

dently or in relatively small clusters, we examine 190

them simultaneously in the context of a competitive 191

quantitative model. We used random forest analyses 192

(RFA), a machine-learning technology for evaluating 193

the relative importance of multiple biomarker and risk 194

factors predictors to the discrimination of higher and 195

lower classes of LHC and RHC atrophy trajectories. 196

METHODS 197

Alzheimer’s disease neuroimaging initiative 198

Data used in preparation of this article were 199

obtained and downloaded from the ADNI database 200

(http://adni.loni.usc.edu on June 30, 2020). The 201

ADNI was launched in 2003 as a public-private 202

partnership, led by Principal Investigator Michael 203

W. Weiner, MD. The primary goal of ADNI has 204

been to test whether serial MRI, positron emission 205

tomography, other biological markers, and clinical 206

and neuropsychological assessment can be combined 207

to measure the progression of MCI and early AD. 208

For up-to-date information, see http://www.adni- 209

info.org. 210

Participants 211

From the ADNI database, we used a subsample 212

of older adults who were cognitively normal at base- 213

line with at least one wave of successful MRI data 214

that were processed with the longitudinal imaging 215

pipeline by UCSF (files: UCSFFSL 02 01 16.csv, 216

UCSFFSL51Y1 08 01 16.csv, and UCSFFSL51A 217

LL 08 01 16.csv). The final sample consisted of 218

http://adni.loni.usc.edu
http://www.adni-info.org
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Table 1
Baseline characteristics for entire sample (n = 351)

Whole LHC LHC LHC RHC RHC RHC
(Highest) (Middle) (Lowest) (Highest) (Middle) (Lowest)

N 351 100 173 78 96 167 88
n in ADNI-1 214 60 113 41 55 105 54
n in ADNI-2 137 40 60 37 41 62 34
Sex (% Female) 48.7 64.0 46.8 33.3 69.8 45.5 31.8
Age M (SD) 74.8 (5.7) 75. 1 (5.9) 75.0 (2.6) 73.9 (5.6) 74.6 (6.2) 75.1 (5.5) 74.5 (5.4)
Education M (SD) 16.3 (2.7) 15.7 (2.6) 16.3 (2.9) 17.2 (2.4) 15.3 (2.8) 16.5 (2.7) 17.2 (2.4)
MMSE M (SD) 29.1 (1.0) 29.1 (1.2) 29.1 (1.0) 29.0 (1.1) 29.2 (1.2) 29.1 (1.1) 29.1 (1.0)
ADAS-Cog M (SD) 9.3 (4.3) 8.5 (3.9) 9.7 (4.4) 9.2 (4.6) 9.0 (4.0) 9.3 (4.4) 9.5 (4.7)

MMSE, Mini-Mental State Examination.

351 participants who were 1) cognitively unim-219

paired at baseline (Mean [M] age at baseline = 74.8,220

SD = 5.7, baseline range = 59.8–90.6 years, Mini-221

Mental State Examination [MMSE] M = 29.1;222

ADAS-Cog M = 9.2, 48.7% Female, 14% �2+, 25%223

�4+) and 2) followed for up to six times points (M224

interval between successive time points = 0.91 years225

[SD = 0.53]). The full distribution analyzed in this226

study populated a 35-year band of aging (ranging227

from 59.8 to 94.6 years). The total wave observa-228

tions in this study were overwhelmingly cognitively229

normal (96.3%), with only 3.7% and 0.56% of obser-230

vations being persons with MCI or AD respectively.231

As such, the present sample was uniformly CN at the232

outset of the study and predominantly CN throughout233

the remainder of the study period. Baseline partic-234

ipant characteristics and demographic information235

can be found in Table 1. Individuals were considered236

cognitively unimpaired at baseline if they: 1) had no237

memory complaints, 2) scored between 24–30 on the238

MMSE, 3) had a Clinical Dementia Rating (CDR)239

score of 0, and 4) scored equal to or above a cut-off240

based on years of education (3, 5, or 9 for 0–7, 8–15,241

and 16 or more) on the Logical Memory II subscale of242

the Wechsler Memory Scale-Revised [47]. The ADNI243

data collection procedures were in certified compli-244

ance with prevailing human ethics guidelines and245

boards. All participants or authorized representatives246

provided informed written consent.247

MRI acquisition and image processing248

MRI data were provided by the ADNI neu-249

roimaging team and full details about the image250

processing can be found on adni.loni.usc.edu in the251

following file: UCSF FreeSurfer Methods and QC252

OFFICIAL 20140131.pdf. Briefly, cortical recon-253

struction and volumetric segmentation was per-254

formed with the FreeSurfer image analysis suite,255

which is documented and freely available for down- 256

load online (http://surfer.nmr.mgh.harvard.edu/). We 257

used longitudinal pipelines (freesurfer.net) which 258

uses each subject as their own control and pro- 259

cessed the data using FreeSurfer 4.4 (1.5T) and 260

FreeSurfer 5.1 (3T) [48]. The technical details of 261

these procedures are described in prior publications 262

[49–60]. Briefly, this processing includes motion cor- 263

rection and averaging [61] of multiple volumetric T1 264

weighted images, removal of non-brain tissue using 265

a hybrid watershed/surface deformation procedure 266

[59], automated Talairach transformation, segmenta- 267

tion of the subcortical white matter and deep gray 268

matter volumetric structures (including hippocam- 269

pus, amygdala, caudate, putamen, ventricles) [52, 270

53] intensity normalization [62], tessellation of the 271

gray matter white matter boundary, automated topol- 272

ogy correction [54, 63], and surface deformation 273

following intensity gradients to optimally place the 274

gray/white and gray/cerebrospinal fluid borders at the 275

location where the greatest shift in intensity defines 276

the transition to the other tissue class [49, 55, 60]. 277

ADNI protocols have ensured that MRI harmoniza- 278

tion is performed by using 1) a standardized protocol, 279

harmonized across all three vendors (GE Healthcare, 280

Siemens Medical Systems, Philips Healthcare); 2) 281

the use of a geometric phantom for distortion evalua- 282

tion; and 3) manual quality control of the image data 283

[64, 65]. 284

Quality control was conducted by the ADNI
neuroimaging team. We removed all failed segmen-
tations, indicating a global failure due to extremely
poor image quality, registration issues, gross mises-
timation of the hippocampus, or a processing error.
In the present sample, 60.1% of the images were pro-
cessed with the FreeSurfer 4.4 (1.5T) and 39.9% with
the FreeSurfer 5.1 (3T) pipelines. Hippocampal vol-
umes and estimated intracranial volume from the aseg
file were used. We corrected LHC and RHC volume

http://surfer.nmr.mgh.harvard.edu/
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for head size at the individual level (and at each time
point) using the following formula [66]:

Hippocampal volume

Intra − cranial volume
x 103

Magnetic field strength (coded as 1.5T, 3T, or285

change from 1.5T to 3T) was used as a covariate286

for hippocampal volume level and slope within each287

class in the LCGA.288

Biomarkers and risk factors289

Based on previous literature and availability, we290

identified 38 biomarkers and risk factors available291

at baseline which have been identified to be associ-292

ated with increased risk of AD. We included these293

biomarkers and risk factors in the machine learn-294

ing prediction models for RG2 (see Table 2). For295

interpretive convenience, we sorted the biomarkers296

and risk factors into eight modalities: biospeci-297

men (e.g., CSF t-tau; n = 6), demographic (e.g., sex;298

n = 3), genetic (APOE, coded as �2 + [�2/�2, �2/�3],299

�3/�3, and �4 + [�3/�4, �4/�4] with �2/�4 carriers300

removed; n = 1), vascular and metabolic (e.g., sys-301

tolic blood pressure; n = 5), lifestyle (e.g., smoking302

history; n = 2), comorbidities (e.g., cardiovascular303

disease; n = 17), familial background (e.g., paternal304

dementia history; n = 2), and cognitive status (e.g.,305

MMSE; n = 2).306

Statistical analyses307

RG1. Classes of LHC and RHC308

We analyzed the longitudinal data with chrono-309

logical age as the metric of change. Accordingly,310

age is included directly into the analyses and is311

essentially co-varied. We used LCGA, which imple-312

ments an algorithm based on individual level (i.e.,313

intercept) and slope, to identify differentiable classes314

of individual trajectories within the overall distribu-315

tion of trajectories [67]. Analyses were conducted in316

Mplus 8.2 [68] and performed separately for LHC and317

RHC volume change data. The analysis plan speci-318

fied the development of the most parsimonious one319

class (baseline) model, followed by the testing and320

comparison of four alternative k-class models to the321

k-1 models. LCGA can model non-linear trajectories;322

however, quadratic models were tested and removed323

from consideration due to poorer model fit. Thus, all324

tested models were random intercept, random slope325

linear growth models with the variance fully con-326

strained within each class. We evaluated model fit327

in three steps only for models with entropy values 328

greater than 0.8, which confirm that the model has 329

satisfactory class separation and classification pre- 330

cision. Higher entropy is the best indicator of model 331

separation, with values of 1 indicating perfect classifi- 332

cation precision and separation between classes [20]. 333

First, we considered models which had lower values 334

(compared to the baseline model) of the following 335

recommended statistical fit indices: Akaike informa- 336

tion criterion (AIC), Bayesian information criterion 337

(BIC), and sample-size adjusted BIC (SABIC) [20]. 338

For this step, we plotted the values of fit indices (i.e., 339

AIC, BIC, SABIC) on the number of classes in a scree 340

or elbow plot [20, 69] to identify a possible inflection 341

point (i.e., the point at which the values the slope 342

changes). Second, as is recommended for LCGA 343

research in which classes will be used for subsequent 344

analyses [70], we applied an a priori cut-off criterion 345

for model selection which stipulated that candidate 346

models would have greater than 10% of the sample 347

in each class. This ensured that the subsequent predic- 348

tion analyses (in the second research goal) would have 349

sufficient participants in each identified class for sta- 350

ble and robust multiple-group analyses and solutions. 351

As a consequence of this model selection criterion, 352

possible low prevalence classes of potential clini- 353

cal interest were not identified or studied. We aimed 354

to represent as much as possible the broader distri- 355

bution of initially cognitively normal aging adults 356

and account for any existing heterogeneity using 357

this recommended approach [20]. Third, we con- 358

sulted related and neighboring literature to ensure that 359

class parameters for the final model were consistent 360

with theoretical expectations. Based on complemen- 361

tary findings in the episodic memory literature, we 362

expected to find a three class model for hippocampal 363

volume trajectories [19]. 364

RG2. Important predictors of LHC and RHC 365

class membership 366

Prediction analyses were also conducted sepa- 367

rately for LHC and RHC and used the full pool of 368

38 AD-related biomarkers and risk factors. Using 369

RFA (R 3.2.5, “Party” package) [71], we simulta- 370

neously tested these biomarkers and risk factors for 371

relative importance in discriminating the lowest ver- 372

sus highest hippocampal trajectory classes. We used 373

the conditional probabilities provided in the LCGA to 374

determine class membership for individuals. Specif- 375

ically, the models determined each individual’s LHC 376

and RHC volume at every wave (i.e., level) and the 377

slope of volume change [72] and then assigned them 378
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Table 2
Predictors by modality and measurement characteristics

Modalities Biomarkers Metric % Missing % Missing
for LHC for RHC

Biospecimen Plasma A�1–401 pg/mL 47.2 44.6
Plasma A�1–421 pg/mL 46.6 44.0
CSF A�1–422 pg/mL 38.2 35.3
CSF total-tau2 pg/mL 38.8 35.9
CSF p-tau2 pg/mL 38.2 35.3
Plasma tau3 pg/mL 55.6 50.0

Demographic Age Years 0 0
Sex Female/Male 0 0
Education Years 0 0

Genetic APOE �2+, �3/�3, �4+ 0 0
Vascular/Metabolic Systolic blood pressure mm Hg 0 0

Diastolic blood pressure mm Hg 0 0
Hypertension 140/90 mm Hg 0 0
Subjective report of diabetes Yes / no 0 0
Glucose level at baseline mg/dL 3.9 2.2

Lifestyle Body mass index kg/m2 1.1 0.5
History of smoking Yes / no 0 0

Co-morbidities Geriatric depression scale
score

Mild (5–8),
moderate
(9–11), severe
(12–15)

0 0

Cardiovascular, alcoholism,
psychiatric, neurological,
head/eyes/ears/nose/throat,
respiratory, hepatic,
dermatologic connective
tissue, musculoskeletal,
endocrine-metabolic,
gastrointestinal,
hematopoietic-lymphatic,
renal-genitourinary,
allergies/drug sensitivities,
malignancy, and/or major
surgeries

Yes / no 0 0

Familial Background Maternal dementia history Yes / no 0.6 0
Paternal dementia history Yes / no 1.7 2.6

Cognitive Status MMSE 0–30, > 24
indicates no
dementia

0 0

ADAS-Cog 0–70, ≥ 18
indicates
cognitive
impairment

0 0

1Plasma collection - University of Pennsylvania (UPENNPLASMA.csv); 2CSF collection - University of Pennsylvania (UPENN
BIOMK MASTER.csv, median re-scaled values); 3Plasma collection – Blennow Lab (BLENNOWPLASMATAU.csv).

to the class to which they had the highest proba-379

bility of membership. The conditional probabilities380

for membership assignment were very high for both381

LHC (M = 0.96; % > 0.8 = 92.3) and RHC (M = 0.97,382

% > 0.8 = 92.8).383

Due to its robustness to overfitting and ability to384

accommodate a large number of predictors, RFA385

was selected as the optimal technique for simulta-386

neous testing of a large number of mixed-type (i.e.,387

categorical and continuous) variables [19]. Unlike388

conventional statistical methods (e.g., multinomial389

logistic regression), which require conservative 390

correction approaches, RF prediction models are 391

equipped with provisions that lead to accurate and 392

stable prediction solutions with many predictors [73, 393

74]. Combining multiple classification predictions 394

and regression trees (ntree) based on a random sample 395

of participants and predictor variables (mtry), RFA is 396

a recursive partitioning multivariate data exploration 397

technique. Each forest was comprised of ntree = 1000 398

(sufficient for good model stability) and each poten- 399

tial split evaluated a random sample of the square 400
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root of the total number of predictors (biomarkers401

and risk factors; mtry = 6) [19]. We utilized the402

cforest function in the “Party” package to deter-403

mine biomarker and risk factor importance based on404

their conditional permutation accuracy importance405

(varimp function; conditional = TRUE), utilizing an406

algorithm that averages the prediction weight of407

each of the variable across all 1000 permutations408

[73–75]. Interactions between predictors are taken409

into account with each permutation when variable410

importance is determined, although specific interac-411

tions are not reported [74]. Specifically, conditional412

permutation importance provides a measure of the413

association between the outcome (i.e., hippocam-414

pal trajectory class) and each predictor based on the415

values of other predictors [76]. The conditional vari-416

able importance method is especially advantageous in417

that it accounts for potentially correlated predictors418

to avoid typically occurring multicollinearity issues419

[76–78]. As such, results regarding ranked predictor420

importance are presented and discussed in the context421

of all included predictors. After removing biomark-422

ers and risk factors that were of lowest importance,423

the final RFA consisted of 16 variables (mtry = 4).424

Important variables were determined based on obser-425

vation of an ‘elbow’ in the RFA plot. The cforest426

function also computes out-of-bag estimates, which427

can be used in place of cross-validation procedures428

[79]. For both LHC and RHC volume trajectory mod-429

els, we reported the concordance statistic (C), which430

is equivalent to the area under the curve. In non-431

medical prediction analyses an area under the curve or432

C value of 0.5 is considered to be chance, between 0.6433

and 0.7 is considered to be a medium effect size, and434

0.8 or greater is considered a strong effect size [19]. In435

order to clarify the direction of relationship between436

the identified important predictors and hippocampal437

trajectory class membership, we report post-hoc 438

correlational analyses as well as group means fre- 439

quencies. These were interpreted independently from 440

other predictors and do not represent formal proba- 441

bilities of risk. 442

Missing biomarker and risk factor data was add- 443

ressed as follows. Across the biomarker and risk fac- 444

tor modalities, with one exception, missing data rates 445

were very low (range = 0 to 3.9% for LHC; 0 to 2.6% 446

for RHC). The exception was the biospecimen modal- 447

ity (range = 38.2–55.6% for LHC; 35.3–50.0% for 448

RHC). Details by biomarker and risk factor are pro- 449

vided in Table 2. Missing data were imputed using 450

the “missForest” package as recommended in R [80, 451

81]. This package is especially recommended in the 452

case of mixed-type missing data. Used together with 453

the “RandomForest” package in R, the “missForest” 454

package utilizes a random forest trained on the data 455

matrix for missing value prediction [80, 82]. 456

RESULTS 457

RG1: LHC and RHC trajectory classes 458

Left hippocampal volume trajectories 459

Model fit statistics for all analyses are presented 460

by number of classes in Table 3. All tested mod- 461

els had acceptable entropy values (i.e., > 0.8). The 462

two-, three-, and five-class models were selected as 463

possible candidate models as they had lower AIC, 464

BIC and SABIC values than the baseline model and 465

sufficient participants in each class. We selected the 466

three-class model as the final model following the 467

inspection of a scree plot (see Supplementary Fig- 468

ure 1) and in the context of past findings in the related 469

domain of memory aging trajectory analyses [19]. 470

The three-class model is portrayed in Fig. 1c, with 471

Table 3
Latent class growth analyses model fit statistics and class proportions for left and right hippocampal volume

Volumetric Variable Number Class Proportions AIC BIC SABIC Entropy
of Classes

Left Hippocampus 1 – 403.50 442.12 410.39 –
2 0.49/0.51 –909.04 –851.13 –898.71 0.90
3∗ 0.49/0.29/0.22 –1907.10 –1829.88 –1893.33 0.92
4 Did not replicate – – – –
5 0.10/0.26/0.22/0.13/0.30 –2707.13 –2591.31 –2686.48 0.89

Right Hippocampus 1 – 399.19 437.80 506.08 –
2 0.46/0.54 –885.82 –827.91 –875.49 0.90
3∗ 0.25/0.27/0.48 –1997.35 –1920.14 –1983.58 0.93
4 0.12/0.34/0.23/0.31 –2450.80 –2354.28 –2433.59 0.92
5 0.12/0.09/0.36/0.22/0.21 –2765.27 –2649.45 –2744.62 0.90

AIC, Akaike information criteria; BIC, Bayesian information criteria; SABIC, Sample-size adjusted BIC. * Identified as best model fit based
on low AIC, BIC, SABIC and no class proportion less than 10%.
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Fig. 1. Distribution of left (1a) and right (1d) hippocampus volume data. Individual trajectories of left (1b) and right (1e) hippocampal
volume. Three classes were identified within left (1c) and right (1f) hippocampal volume trajectories: Class 1 (Highest, Least Atrophied),
Class 2 (Middle), and Class 3 (Lowest, Most Atrophied). Hippocampal volume was corrected for head size using (hippocampal volume /
intra cranial volume) x 103.

Table 4
Final latent class growth analyses models statistics and parameters

Volumetric Variable Class n (%) Level (Intercept) Slope [95% CI]
[95% CI]

Left Hippocampus 1 100 (28.5) 2.50 [2.50–2.51] –0.02 [–0.025—0.021]
2 173 (49.3) 2.14 [2.13–2.14] –0.03 [–0.028—0.024]
3 78 (22.2) 1.79 [1.78–1.80] –0.03 [–0.030—0.022]

Right Hippocampus 1 96 (27.4) 2.53 [2.53–2.54] –0.02 [–0.025—0.021]
2 167 (47.6) 2.21 [2.20–2.21] –0.03 [–0.028—0.023]
3 88 (25.1) 1.83 [1.83–1.84] –0.03 [–0.027—0.023]

Class 1 refers to the higher group; Class 2 refers to the middle group; Class 3 refers to the lower group.

parameter means (level and slope) reported in Table 4.472

Discriminated and ranked by a combination of both473

level and slope, from highest to lowest volume in the474

trajectory distribution, the three classes can be char-475

acterized as follows. Class 1 (n = 100; the group at476

the top of the distribution) was characterized by the477

highest combination of level and slope, followed by478

Class 2 (n = 173), the group in the middle of the distri-479

bution, and Class 3 (n = 78), the group at the bottom480

of the distribution. Informally, the classes appear to481

differ more in level than in slope (with Class 2 and 3482

having the steeper slopes), but both parameters con-483

tributed to the latent class solution. Specifically, the484

LCGA algorithm identifies distinguishable trajectory485

classes based on simultaneous consideration of level486

and slope, both of which are essential parameters in487

model identification. It is important to note that the488

resulting trajectory classes are statistically differen- 489

tiated even though they may not appear visually as 490

dramatically distinct at their edges. This between- 491

class distinction is clearly indicated by the entropy 492

values (revealing good class separation) and the level 493

and slope parameters (and 95% confidence intervals) 494

for each class (see Table 4). 495

Right hippocampal volume trajectories 496

Model fit statistics for all analyses are presented 497

by number of classes in Table 3. Similar to the LHC 498

models, all tested models had acceptable entropy val- 499

ues (> 0.8). The four-class model was removed from 500

consideration as the loglikelihood failed to replicate, 501

indicating that no global solution was reached. The 502

five-class model was removed from consideration due 503

to insufficient participants in one class (9%). The 504
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two- and three-class models were selected as possible505

candidate models as they had lower AIC, BIC, and506

SABIC values than the baseline model and sufficient507

participants in each class. As with LHC trajectories,508

we selected the three-class model as the final model509

based on past findings and inspection of the scree510

plot of relative fit indices for the inflection point (see511

Supplementary Figure 2). Thus, we identified three512

unique classes of RHC volume trajectories within513

the overall sample (Fig. 1f). Parameter means (level514

and slope) are reported in Table 4. Discriminated and515

ranked by a combination of level and slope, from516

highest to lowest volume in the trajectory distribu-517

tion, the classes can be characterized as follows. Class518

1 (n = 96; the group at the top of the distribution) was519

characterized by the highest combination of level and520

decline, followed by Class 2 (n = 167), the group in521

the middle of the distribution, and Class 3 (n = 88), the522

group at the bottom of the distribution. Comparable523

to the LHC trajectory class distribution, the classes524

appear to differ in level more than slope; however,525

both parameters contributed to the latent class solu-526

tion. Informally, the level (but not slope) of each RHC527

class appears to be consistently higher than that of the528

corresponding LHC class.529

RG2: Important predictors of LHC and RHC530

class membership531

We performed RFA to identify biomarkers and532

risk factors that best discriminated between the high-533

est (Class 1) and lowest (Class 3) trajectory classes534

within LHC and RHC volume separately.535

Left hippocampal volume trajectory classes 536

The higher and lower LHC volume trajectory 537

classes were discriminated by seven biomarkers 538

and risk factors from four modalities: biospecimen 539

(plasma A�1–40, plasma tau, plasma A�1–42), demo- 540

graphic (sex, education), co-morbidities (geriatric 541

depression scale [GDS] score), and lifestyle (body 542

mass index; C = 0.80; Fig. 2a). As informed by post- 543

hoc correlational analyses, we found that individuals 544

belonging to the lower LHC volume trajectory class 545

were more likely to have lower levels of plasma 546

A�1–40, A�1–42, and tau, greater number of years 547

of education, higher GDS scores (indicating more 548

depressive symptoms), a lower BMI, and be male 549

(see Table 5 for biomarker/risk factor frequencies and 550

means per class). 551

Right hippocampal volume trajectory classes 552

The higher and lower RHC volume trajectory 553

classes were discriminated by three biomarkers and 554

risk factors from the following two modalities: demo- 555

graphic (sex, education) and biospecimen (plasma 556

A�1–42; C = 0.78; Fig. 2b). As informed by post- 557

hoc correlational analyses, we found that individuals 558

belonging to the lower RHC trajectory class were 559

more likely to be male, have lower levels of plasma 560

A�1–42, as well as have greater number of years of 561

education (see Table 5 for biomarker frequencies and 562

means per class). 563

DISCUSSION 564

This study applied data-driven technologies to lon- 565

gitudinal imaging data to 1) extract computationally 566

Fig. 2. Variable importance (permutation accuracy) in the discrimination of the (2a) lowest (n = 78) versus highest (n = 100) classes of
left hippocampal volume trajectories (C = 0.80, ntree = 1000, mtry = 4), and (2b) lowest (n = 88) versus highest (n = 96) classes of right
hippocampal volume trajectories (C = 0.78, ntree = 1000, mtry = 4). GDS, Geriatric Depression Scale score; BMI, body mass index; APOE,
Apolipoprotein E genotype; MH, medical history; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CSF A�1–42,
cerebrospinal fluid amyloid �1–42; CSF t-tau, cerebrospinal fluid total tau; CSF p-tau, cerebrospinal fluid phosphorylated tau; MMSE,
Mini-Mental State Examination score.
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Table 5
Biomarker and risk factor means and frequencies for LHC and RHC trajectory classes

Significant Biomarker Lowest LHC Highest LHC Lowest RHC Highest RHC
Trajectory Class Trajectory Class Trajectory Class Trajectory Class

N 78 100 88 96
Plasma A�1–40 139.72 (56.78) 171.46 (47.03) 142.23 (47.19) 168.31 (45.30)
Sex (%, female) 33.33 64.0 31.82 69.80
Plasma t-tau 2.41 (0.94) 2.65 (1.05) 2.50 (1.42) 2.55 (1.07)
Plasma A�1–42 34.71 (10.58) 41.00 (14.62) 34.35 (10.13) 42.04 (14.52)
Education, y (SD) 17.15 (2.42) 15.73 (2.56) 17.17 (2.43) 15.33 (2.73)
GDS 0.91 (1.27) 0.52 (0.88) 0.81 (1.19) 0.67 (1.01)
BMI 26.06 (4.47) 27.35 (4.69) 26.11 (4.43) 27.36 (5.07)
Follow-up Cognitive Status Documentation
# of person-waves (observations) 398 496 442 473
% of person-waves that are non-AD 98.2 99.8 98.6 100
% of person-waves that are non-AD and non-MCI 93.0 98.6 92.5 98.7

separable classes based on individual level and slope567

from LHC and RHC trajectory distributions and 2)568

subsequently identify key AD-related biomarkers and569

risk factors that discriminate between the higher and570

lower trajectory classes. To our knowledge, no previ-571

ous study has used these technologies to 1) identify572

trajectory classes based on separate LHC and RHC573

volume change in a sample of predominantly cogni-574

tively normal older adults and 2) assemble and test575

a large pool of putative biomarker and risk factor576

predictors of trajectory class.577

Overall, the class structures (number and member-578

ship) and constituent trajectory characteristics (levels579

and slopes) for the two hemispheres were similar.580

One exception is that RHC volumes appeared con-581

sistently higher (in level) for each corresponding582

class. This RHC advantage is consistent with previous583

research indicating that RHC volumes are generally584

more preserved at corresponding ages than LHC vol-585

umes in cognitively normal older adults [43, 46, 83].586

Our results provide a new and discriminating indica-587

tor of this advantage; namely, the advantage can be588

observed at all corresponding classes (higher, middle,589

and lower) of aging change. For both hemispheres,590

the slope means across classes were relatively simi-591

lar; however, the two lowest classes (middle, lowest)592

exhibited steeper slopes than the highest class. This593

pattern was expected as the current sample con-594

sisted of uniformly cognitively normal older adults at595

baseline and who remained clinically non-impaired596

over 96% of the analyzed longitudinal observations.597

Notably, even in the more limited heterogeneity598

of a cognitively unimpaired older adult sample (as599

compared to a more clinically diverse sample), our600

analytic approach detected discriminable classes of601

HC volumetric change. In addition, although there602

was some overlap between the participants classi- 603

fied into the LHC and RHC classes, there were a 604

substantial number of individuals (n = 93) who were 605

uniquely classified (e.g., were in the lowest LHC but 606

not the lowest RHC) in the two hemispheric analy- 607

ses. These findings provide further evidence for the 608

consideration of LHC and RHC differences in future 609

research. 610

As increasing hippocampal atrophy is associated 611

with incipient clinical progression [8, 9, 84], two 612

potential implications of our data-driven latent class 613

approach could be considered. First, these classes of 614

hippocampal trajectories could be provisionally con- 615

sidered as “secondary phenotypes” of brain aging 616

in that they 1) differ in objective and salient brain 617

aging trajectory characteristics and 2) may be associ- 618

ated with differential outcomes or clinical phenotypes 619

such as cognitive impairment or AD. A post-hoc 620

informal check of the current data revealed that cog- 621

nitive performance over time decreased in a stepwise 622

manner across hippocampal trajectory classes (see 623

the Supplementary Material for ADAS-Cognition 624

and ADNI Memory Composite scores by wave). In 625

addition, higher scores on the CDR were somewhat 626

more prevalent in the lowest classes and none of the 627

participants with a CDR of 1 were classified in the 628

highest trajectory classes. Similarly, a recent study 629

identifying four spatiotemporal trajectory subtypes 630

of tau deposition found that longitudinal MMSE 631

outcomes differed between subtypes [85]. The inter- 632

pretation was that data-driven groups based on other 633

AD-related biomarkers (tau) have also identified dif- 634

ferences in cognitive trajectories [85]. Taken together, 635

the present and complementary findings chart an 636

important direction for future research, in which stud- 637

ies with comprehensive clinical outcome information 638
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could provide insights into AD or impairment risk639

based on long-term pre-clinical trajectory class mem-640

bership. Second, members of higher trajectory classes641

may have lower exposure to AD risk factors. We642

investigated these implications in the next research643

goal by testing associations with AD biomarkers and644

risk factors.645

Accordingly, we tested predictor importance for646

a roster of 38 multi-modal AD risk factors and647

biomarkers. The machine learning technology (RFA)648

evaluated the relative importance of all of the pre-649

dictors in a quantitatively competitive context. The650

leading predictors of extreme classes (higher ver-651

sus lower) were thus identified for their prediction652

importance with both independent and interactional653

contributions considered. The present prediction654

models do not establish mechanisms of associ-655

ation, but instead identify the risk factors that656

emerge in data-driven analyses from a large panel of657

potential predictors and thereby point to promising658

future directions of both validation and mechanistic659

research. The full roster of predictors was presented660

earlier and listed (by modality) in Table 2. Three661

aspects of the results are discussed: 1) the subset of662

predictors that were observed for both LHC and RHC,663

2) any predictors that were selectively associated with664

either hemisphere, and 3) notable predictors (e.g., fac-665

tors that have been associated in candidate biomarker666

studies) that did not emerge in the present analy-667

ses. In all cases, we refer to any available candidate668

biomarker and risk factor literature to establish the669

context. Three important predictors from two modali-670

ties were robust across the hemispheres: demographic671

(sex, education) and biospecimen (plasma A�1–42).672

Four additional predictors were observed selectively673

in the LHC analyses. We characterize the three com-674

mon predictors briefly and then discuss the unique675

predictors for LHC.676

Regarding predictors in common for LHC and677

RHC classes, the sex factor indicated that being male678

was associated with membership in the lower trajec-679

tory classes. For hippocampal atrophy in cognitively680

unimpaired aging, a common result is that, for given681

ages, males experience more overall atrophy than682

females [86]. Our results conducted separately on683

LHC and RHC extend this pattern to both hemi-684

spheres. As an illustration, for both LHC and RHC we685

noted that membership of the upper (less atrophied)686

class was predominantly female (64–70%) whereas687

the lower class membership was predominantly688

male (66.7–68.2%). Notably, our current multimodal689

approach highlights the importance of sex relative690

to other established AD biomarkers and risk fac- 691

tors in predicting differential hippocampal atrophy. 692

This female advantage is concordant with 1) find- 693

ings in the cognitively asymptomatic aging literature, 694

whereby cognitively normal females often perform 695

at higher the levels than males, and 2) our post-hoc 696

check regarding cognitive trajectories for this sam- 697

ple (see Supplementary Material). Specifically, mean 698

memory scores for the lowest HC trajectory classes 699

(predominantly male) were lower than for the highest 700

trajectory classes (predominantly female), which is 701

consistent with the growing evidence of a male disad- 702

vantage in asymptomatic memory aging [24, 87, 88]. 703

However, it should be noted that this female advan- 704

tage may be reversed in persons living with AD or 705

even preclinical AD. For example, studies have found 706

that females with AD exhibit more rapid hippocam- 707

pal atrophy [89] and similar associations have been 708

reported for females with AD-related neuropathol- 709

ogy [44]. In contrast, we found that in predominantly 710

cognitively unimpaired individuals, men made up a 711

higher proportion of the hippocampal trajectory class 712

characterized by the lowest level and steepest decline 713

(i.e., most atrophy). Thus, future research can aim 714

to resolve whether there is 1) a selectively acceler- 715

ated rate of hippocampal volume loss for preclinical 716

and clinical (where AD-related neuropathology, such 717

as low CSF A�42 levels, would be evident) females 718

or 2) some other factor accounts for the contrasting 719

observations. 720

More years of education was associated with 721

the lowest (most atrophied) classes of both LHC 722

and RHC volume trajectories. In cognitively unim- 723

paired older adults, non-significant cross-sectional 724

associations between hippocampal size (volume and 725

thickness) and education have been reported [90, 726

91]. In contrast, education has been previously iden- 727

tified as a potential protective factor in the AD 728

epidemiological literature [92]. Longitudinal find- 729

ings regarding associations with cognitive reserve 730

(including education) have also been mixed [93, 94]. 731

These inconsistencies may originate from a num- 732

ber of study-related differences, including: 1) design 733

(cross-sectional versus longitudinal), 2) measure- 734

ment (years of schooling versus attainment), 3) cohort 735

(education differing across generations), 4) study 736

sample (cognitively normal versus clinical; higher 737

versus lower education), 5) analytic approaches (most 738

often single variable versus multi-variable predic- 739

tion models), 6) study role (correlate, covariate, and 740

even AD protective factor), and 7) outcome (cogni- 741

tive differences/changes, brain differences/changes). 742
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In the current ADNI sample, the majority of partic-743

ipants were relatively highly educated (M years of744

total schooling at baseline = 16.3). Previous findings745

regarding the moderation of hippocampal volume by746

education [95] indicate that these effects are dimin-747

ished among those with higher education attainment.748

A relevant previous result [96] led us to explore749

whether the commonly used proportional approach750

to correcting for head size [97–99] could lead to751

potential overcorrections in volume estimates for752

highly educated samples. Specifically, the common753

approach corrects the numerator (hippocampal vol-754

ume) by the denominator (intracranial volume). In755

a post-hoc check we observed a positive correlation756

between intracranial volume and education [96]. We757

suggest (a) careful monitoring of education effects758

in cognitively normal brain aging, (b) further specific759

attention to intracranial HC volume corrections when760

education levels are high, and (c) increasing attention761

to education effects in research on other brain regions762

and related biomarkers (e.g., hippocampal to cortex763

atrophy ratio [94]).764

Lower levels of plasma A�1–42 were associated765

with the lower trajectory classes for both LHC and766

RHC. Although a conventional biomarker of AD,767

A�1–42 has been found to be more strongly related to768

overall neurodegeneration (versus AD specifically)769

as increased levels in the brain and decreased lev-770

els in CSF also occur in other neurodegenerative771

diseases [34]. Evidence for brain atrophy associa-772

tions with plasma levels of A�1–42 have been mixed.773

For example, higher plasma A�1–42 levels and lower774

volumes of hippocampal subfields have been linked775

in older adults with, but not those without, sub-776

jective complaints [100]. In a separate study using777

a large sample of cognitively normal older adults,778

decreased levels of plasma A�1–42 were associated779

with smaller hippocampal volumes and increased780

risk of dementia [101]. Similarly, plasma levels of781

A�1–42 were found to be lower in amnesic MCI782

individuals as compared to cognitively normal older783

adults [102]. Our results contribute to the existing784

and emerging evidence that 1) lower A�1–42 levels785

are a detectable biomarker of emerging neurodegen-786

eration (hippocampal trajectory classes) in initially787

cognitively normal individuals and 2) less invasive788

biomarker collection procedures (e.g., plasma) pro-789

vide reliable indicators of this early trend toward790

neurodegeneration [34, 103].791

Four additional predictors discriminated LHC tra-792

jectory classes only. From the biospecimen modality,793

plasma A�1–40 and plasma tau predicted class794

membership uniquely for the LHC. Specifically, 795

lower levels of both plasma A�1–40 and plasma t- 796

tau were associated with membership to the lowest 797

LHC trajectory class. Our findings support and extend 798

previous reports of lower levels of plasma A�1–40 799

in preclinical AD and AD-related neurodegenera- 800

tion [101, 102]. Specifically, our results indicate 801

that lower baseline levels of plasma A�1–40 pre- 802

dict trajectories associated with more left (but not 803

right) hippocampal atrophy prior to detectable dis- 804

ease stages. For plasma t-tau, increased levels have 805

been associated with lower gray matter volumes in 806

A�+ (but not A�-) older adults [104] as well as 807

higher risk of incident dementia [105]. However, our 808

results suggest that lower plasma t-tau may be differ- 809

entially associated with “secondary phenotypes” of 810

clustered individuals representing different patterns 811

of longitudinal atrophy in cognitively normal adults. 812

A possible explanation is the potential effect of age 813

on plasma t-tau levels. In a recent study, older adults 814

(compared to middle-aged adults) were found to have 815

higher levels of plasma t-tau after controlling for sex 816

and APOE [106]. Although not directly testable in 817

the present data, the average age of the lowest class 818

LHC class (MW1 = 73.9, MW2 = 74.3, MW3 = 74.8, 819

MW4 = 75.7, MW5 = 77.0, MW6 = 78.6) was some- 820

what lower than that of the highest LHC class 821

(MW1 = 75.1, MW2 = 75.6, MW3 = 75.9, MW4 = 76.7, 822

MW5 = 78.2, MW6 = 79.5) at each time point. It is pos- 823

sible that the reported age-related effects extend to 824

a higher age range and to subtler age differences, 825

representing an important area of future investigation. 826

Depressive symptoms (at a non-clinical level) were 827

a selective predictor of LHC trajectory classes, with 828

higher mean GDS score associated with the lowest 829

trajectory class. This result is concordant with pre- 830

vious literature in which depression has been linked 831

with increased AD risk [33]. Similarly, depressive 832

symptoms have been associated with increased lim- 833

bic and prefrontal atrophy over a four-year follow-up 834

in cognitively normal older adults [107]. The left hip- 835

pocampus (but not the right hippocampus) has also 836

been found to be reduced in major depression disorder 837

in adults [108]. In our sample, only 2% of individuals 838

were considered mildly depressed at baseline and no 839

individuals had GDS scores indicating moderate or 840

severe depression. The present findings suggest that 841

the association between mild depressive symptomol- 842

ogy and prefrontal/limbic atrophy also extends to the 843

left hippocampus. Although the mechanism of this 844

relationship remains largely unknown, it is possible 845

that such mood or affect symptomology is associated 846
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with the subtle changes in cognition as a function847

of emerging hippocampal and cortical atrophy [109].848

Another perspective is that hippocampal atrophy may849

be directly affecting networks that are associated with850

mood and impact depressive symptomology through851

numerous mechanisms such as estrogen depletion852

and deregulation of certain neural circuits [110].853

A lower body mass index (BMI) was associated854

with the lower LHC, but not RHC, trajectory class.855

BMI associations with brain and cognitive aging are856

complex [111–113]. A previous studying using BMI857

as a predictor of HC volumetric change reported a858

negative association between hippocampal volume859

(across hemispheres, but with stronger effects for the860

LHC) and BMI [114]. Participants of that study were,861

on average, a decade younger than those of the current862

study. Our findings indicate that a protective effect of863

higher BMI persists in an older cohort, and further864

support that this effect occurs more strongly in the865

LHC. Potential protective effects of increased BMI in866

older age (versus midlife or young-old cohort) have867

been reported in the context of AD risk [115, 116]868

and cognitive decline [117] and may act similarly for869

risk reduction for hippocampal atrophy. Notably, it870

appears that higher BMI might be an important AD871

risk factor in midlife, but this association reverses872

towards protection or risk-reduction in later life and873

older age, perhaps due to weight changes occurring874

in preclinical AD phases [118, 119].875

We tested 38 biomarkers and risk factors as poten-876

tial predictors of trajectory class membership. Our877

analytic approach considered all predictors simulta-878

neously in a computationally competitive context. In879

addition to the seven predictors of trajectory classes,880

we note that there were 31 AD-related predictors that881

did not successfully emerge in either (LHC or RHC)882

of the analyses. Within the biospecimen modality,883

plasma measures of A� and tau outperformed CSF884

A� and tau to discriminate between hippocampal tra-885

jectories. Although CSF measures of A� have been886

consistently reported as sensitive biomarkers of MCI887

and AD, recent developments have identified less888

invasive and lower cost alternatives such as blood-889

based biomarkers [103]. Potentially, these peripheral890

biomarkers are more useful in predicting specific891

pathological changes and broader neurodegeneration,892

such as hippocampal atrophy. Alternatively, it is pos-893

sible that the present plasma markers are better suited894

as predictors of non-clinical aging outcomes (i.e.,895

hippocampal classes representing a dynamic distribu-896

tion of cognitively normal longitudinal trajectories)897

as compared to related findings for CSF markers898

and associations with AD diagnosis and clinical pro- 899

gression patterns. For the genetic modality, although 900

APOE genetic risk is the most important genetic risk 901

factor for sporadic AD [120], it did not appear as one 902

of the important or leading predictors of the lowest 903

HC atrophy class (although it was among the lesser 904

contributing predictors). This may point to an atten- 905

uated importance of single genetic factors within an 906

interactive network of wide-ranging AD risk factors. 907

The inclusion of a polygenic AD-related risk score 908

may have revealed more predictive utility in the con- 909

text of other risk-related AD predictors and should 910

be investigated in future research [22]. Within the 911

vascular/metabolic modality, no factors reached suffi- 912

cient variable importance to be considered important 913

predictors despite past findings suggesting possible 914

associations [17, 121]. For the demographic modality, 915

chronological age was not found to be an important 916

predictor of the lowest hippocampal trajectory class 917

membership. Instead, our findings indicate that, when 918

available, certain aging-related mechanistic predic- 919

tors may be more important than age per se for 920

predicting adverse brain aging outcomes in predom- 921

inantly cognitively normal samples. This provides 922

additional support to the growing evidence that mark- 923

ers of biological age (versus chronological age) are 924

important to consider in predictions of exacerbated 925

decline in non-demented aging [122–125]. Given the 926

current analytic approach and the use of a condi- 927

tional variable importance measure, we identified the 928

most prominent predictors of hippocampal trajectory 929

classes in the context of other previously identified 930

and often closely related AD-related biomarkers and 931

risk factors. 932

There were several limitations to the present 933

study. First, previous reports have acknowledged 934

some limited generalizability of the ADNI cohort 935

due to convenience sampling and possible biases in 936

recruited participants (e.g., familial history of AD) 937

[126]. However, these potentially at-risk individu- 938

als are key targets of clinical trials and prevention 939

efforts. As our study aimed to identify biomark- 940

ers and risk factors associated with morphometric 941

change in cognitively normal older adults, we have 942

identified biomarker associations in individuals that 943

are likely to be targeted for these purposes. Sec- 944

ond, although variables included in the current study 945

had few missing data (0–3.9%), there was a notable 946

exception for biomarkers in the biospecimen modal- 947

ity. For the biospecimen biomarkers, missing data 948

ranged from 35 to 51.3%. Missing data were imputed 949

using the ‘missForest’ package in R which utilizes a 950
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random forest to iteratively predict missing values.951

The present imputation procedure and RFA models952

allowed for the inclusion of many predictors from953

multiple modalities despite some with higher rates954

of missing data. We consider this a notable strength955

of our approach, as previous studies predicting AD956

risk have often employed fewer biomarker or risk fac-957

tor predictors, possibly due to analytical restrictions958

(e.g., multiple comparison issues) [127–129]. Repli-959

cating and validating these findings using additional960

biomarker data would be an important future step.961

Third, because of data limitations we were unable to962

investigate whether preclinical trajectory class mem-963

bership would predict clinical diagnostic outcomes964

such as MCI or AD. As shown in Table 5, 96.3%965

of the analyzed longitudinal observations were with966

participants who were free of MCI or AD and over967

99% included persons who were non-AD. In total,968

there were very few participants who transitioned to969

AD (n = 8) or MCI (n = 32, with 5 reverting back to970

CN) within the six waves under study—and together971

they contributed data for only 3.7% of the analyzed972

longitudinal observations (AD = 0.56%). By design,973

the present sample was selected initially to be cog-974

nitively asymptomatic (all were cognitively normal975

at baseline) and remained predominantly so through-976

out the study. The very small number of observations977

that could be characterized as impaired was appro-978

priate for our objectives and expected in our design.979

No separate machine learning prediction analysis of980

this small cluster is possible due to severely imbal-981

anced groups. However, a post-hoc check revealed982

that, in general, most of the individuals transition-983

ing to impairment status were members of the lower984

trajectory classes. Accordingly, we suggest future985

work aimed at testing whether lower HC trajectory986

class membership is a reliable precursor condition987

for impairment and AD diagnosis. Fourth, the cor-988

relational analyses to clarify predictor directionality989

were focused more on describing associations with990

predictor variables than interpreting potential under-991

lying mechanisms. Specific mechanisms should be992

further explored in future studies. Fifth, due to the993

ADNI MRI methods and protocols, almost all partici-994

pants from ADNI1 were scanned using 1.5T scanners995

and all participants from ADNI2 were scanned using996

3T scanners. However, we found no significant asso-997

ciations between scanner strength and hippocampal998

trajectory classes. This indicates that scanner strength999

was properly corrected for at the modelling stage,1000

as has been done in previous studies [44]. Sixth,1001

other (non-AD specific) pathologies and risk factors1002

unavailable in this study may have contributed 1003

to the observed hippocampal volume and atrophy 1004

trajectories. 1005

Conclusions 1006

We used multi-wave MRI data from ADNI to iden- 1007

tified three data-driven trajectory classes of left and 1008

right hippocampal volume in asymptomatic older 1009

adults. Our analytic approach, based on an algorithm 1010

of level and slope, revealed that the vast individ- 1011

ual variability in hippocampal atrophy could be 1012

clustered into trajectory classes which capture the 1013

heterogeneous and dynamic nature of brain aging 1014

in cognitively normal older adults. We then applied 1015

machine learning technology to a large, multi-modal 1016

set of AD-related biomarkers and risk factors and 1017

identified the best predictors that discriminated lower 1018

versus higher hippocampal trajectory classes. The 1019

current findings identify several emerging and promi- 1020

nent risk factors and biomarkers associated with early 1021

stages of hippocampal atrophy, all of which merit fur- 1022

ther investigation in future mechanistic and clinical 1023

research. 1024
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das J, Bäckman L, Dixon RA (2015) ApoE and pulse 1148

pressure interactively influence level and change in the 1149

aging of episodic memory: Protective effects among 1150

epsilon2 carriers. Neuropsychology 29, 388-401. 1151

[18] Glisky EL (2007) Changes in cognitive function in human 1152

aging. In Brain Aging: Models, Methods, and Mecha- 1153

nisms, Glisky EL, Riddle DR, Eds. CRC Press/Taylor & 1154

Francis, pp. 3-20. 1155

[19] McFall GP, McDermott KL, Dixon RA (2019) Modi- 1156

fiable risk factors discriminate memory trajectories in 1157

non-demented aging: Precision factors and targets for pro- 1158

moting healthier brain aging and preventing dementia? 1159

J Alzheimers Dis 70, S101-S118. 1160

[20] Masyn KE (2013) Latent class analysis and finite mixture 1161

modeling. In The Oxford Handbook of Quantitative Meth- 1162

ods in Psychology: Vol.2: Statistical Analysis. Little TD, 1163

Ed. Oxford University Press, Oxford, pp. 551-611. 1164

[21] Habes M, Grothe MJ, Tunc B, McMillan C, Wolk 1165

DA, Davatzikos C (2020) Disentangling heterogeneity in 1166

http://www.fnih.org
https://www.j-alz.com/manuscript-disclosures/21-5289r1
https://dx.doi.org/10.3233/JAD-215289


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

16 S.M. Drouin et al. / Discrimination and Biomarker Prediction of Change Classes

Alzheimer’s disease and related dementias using data-1167

driven methods. Biol Psychiatry 88, 70-82.1168

[22] Badhwar A, McFall GP, Sapkota S, Black SE, Chertkow H,1169

Duchesne S, Masellis M, Li L, Dixon RA, Bellec P (2020)1170

A multiomics approach to heterogeneity in Alzheimer’s1171

disease: Focused review and roadmap. Brain 143,1172

1315-1331.1173

[23] Melis RJF, Haaksma ML, Muniz-Terrera G (2019)1174

Understanding and predicting the longitudinal course of1175

dementia. Curr Opin Psychiatry 32, 123-129.1176

[24] McDermott KL, McFall GP, Andrews SJ, Anstey KJ,1177

Dixon RA (2017) Memory resilience to Alzheimer’s1178

genetic risk: Sex effects in predictor profiles. J Gerontol1179

B Psychol Sci Soc Sci 72, 937-946.1180

[25] Ferreira D, Verhagen C, Hernández-Cabrera JA, Cav-1181

allin L, Guo C-J, Ekman U, Muehlboeck J-S, Simmons1182

A, Barroso J, Wahlund L-O (2017) Distinct subtypes of1183

Alzheimer’s disease based on patterns of brain atrophy:1184

Longitudinal trajectories and clinical applications. Sci Rep1185

7, 46263.1186

[26] Nettiksimmons J, Harvey D, Brewer J, Carmichael O,1187

DeCarli C, Jack Jr CR, Petersen R, Shaw LM, Trojanowski1188

JQ, Weiner MW (2010) Subtypes based on cerebrospinal1189

fluid and magnetic resonance imaging markers in nor-1190

mal elderly predict cognitive decline. Neurobiol Aging 31,1191

1419-1428.1192

[27] Jung N-Y, Seo SW, Yoo H, Yang J-J, Park S, Kim YJ,1193

Lee J, San Lee J, Jang YK, Lee JM (2016) Classifying1194

anatomical subtypes of subjective memory impairment.1195

Neurobiol Aging 48, 53-60.1196

[28] Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh M-K,1197

Honnorat N, Erus G, Doshi J, Ferrucci L, Beason-Held LL1198

(2018) Heterogeneity of structural and functional imag-1199

ing patterns of advanced brain aging revealed via machine1200

learning methods. Neurobiol Aging 71, 41-50.1201

[29] Tam A, Dansereau C, Iturria-Medina Y, Urchs S, Orban1202

P, Sharmarke H, Breitner J, Bellec P, Alzheimer’s Disease1203

Neuroimaging Initiative (2019) A highly predictive sig-1204

nature of cognition and brain atrophy for progression to1205

Alzheimer’s dementia. Gigascience 8, giz055.1206

[30] Malpas CB (2016) Structural neuroimaging correlates1207

of cognitive status in older adults: A person-oriented1208

approach. J Clin Neurosci 30, 77-82.1209

[31] Dong A, Honnorat N, Gaonkar B, Davatzikos C (2015)1210

CHIMERA: Clustering of heterogeneous disease effects1211

via distribution matching of imaging patterns. IEEE Trans1212

Med Imaging 35, 612-621.1213

[32] Orban P, Tam A, Urchs S, Savard M, Madjar C, Badhwar1214

A, Dansereau C, Vogel J, Schmuel A, Dagher A (2017)1215

Subtypes of functional brain connectivity as early mark-1216

ers of neurodegeneration in Alzheimer’s disease. BioRxiv,1217

195164.1218

[33] Livingston G, Sommerlad A, Orgeta V, Costafreda SG,1219

Huntley J, Ames D, Ballard C, Banerjee S, Burns A,1220

Cohen-Mansfield J (2017) Dementia prevention, interven-1221

tion, and care. Lancet 390, 2673-2734.1222

[34] Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn1223

B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Kar-1224

lawish J (2018) NIA-AA research framework: Toward a1225

biological definition of Alzheimer’s disease. Alzheimers1226

Dement 14, 535-562.1227

[35] Sapkota S, Huan T, Tran T, Zheng J, Camicioli R, Li L,1228

Dixon RA (2018) Alzheimer’s biomarkers from multiple1229

modalities selectively discriminate clinical status: Rela-1230

tive importance of salivary metabolomics panels, genetic,1231

lifestyle, cognitive, functional health and demographic 1232

risk markers. Front Aging Neurosci 10, 296. 1233

[36] Stricker NH, Dodge HH, Dowling NM, Han SD, Erosheva 1234

EA, Jagust WJ, Alzheimer’s Disease Neuroimaging Ini- 1235

tiative (2012) CSF biomarker associations with change 1236

in hippocampal volume and precuneus thickness: Impli- 1237

cations for the Alzheimer’s pathological cascade. Brain 1238

Imaging Behav 6, 599-609. 1239

[37] Henneman W, Vrenken H, Barnes J, Sluimer I, Verwey 1240

N, Blankenstein M, Klein M, Fox N, Scheltens P, Barkhof 1241

F (2009) Baseline CSF p-tau levels independently predict 1242

progression of hippocampal atrophy in Alzheimer disease. 1243

Neurology 73, 935-940. 1244

[38] Durazzo TC, Meyerhoff DJ, Nixon SJ (2013) Interactive 1245

effects of chronic cigarette smoking and age on hippocam- 1246

pal volumes. Drug Alcohol Depend 133, 704-711. 1247

[39] Valenzuela MJ, Sachdev P, Wen W, Chen X, Brodaty H 1248

(2008) Lifespan mental activity predicts diminished rate 1249

of hippocampal atrophy. PLoS One 3, e2598. 1250

[40] Beltrán JF, Wahba BM, Hose N, Shasha D, Kline 1251

RP, Alzheimer’s Disease Neuroimaging Initiative (2020) 1252

Inexpensive, non-invasive biomarkers predict Alzheimer 1253

transition using machine learning analysis of the 1254

Alzheimer’s Disease Neuroimaging (ADNI) database. 1255

PloS One 15, e0235663. 1256

[41] Falahati F, Westman E, Simmons A (2014) Multivariate 1257

data analysis and machine learning in Alzheimer’s disease 1258

with a focus on structural magnetic resonance imaging. J 1259

Alzheimers Dis 41, 685-708. 1260

[42] Ritter K, Schumacher J, Weygandt M, Buchert R, Alle- 1261

feld C, Haynes J-D, Alzheimer’s Disease Neuroimaging 1262

Initiative (2015) Multimodal prediction of conversion to 1263

Alzheimer’s disease based on incomplete biomarkers. 1264

Alzheimers Dement (Amst) 1, 206-215. 1265
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